

The Economics of Grapevine Leafroll Disease: Case Studies from the Finger Lakes

Shadi S. Atallah, Miguel I. Gómez, Marc F. Fuchs and Timothy E. Martinson Cornell University

Pest Management Symposium: Impacts in the Vineyard and Winery 36th ASEV-ES Annual Conference July 12, 2011, Baltimore, MD

Background

- Grapevine Leafroll Disease (GLD): one of the most important grapevine virus diseases
- Horticultural impact: lower vigor, yield and quality
- Disease management:
 - no control, roguing and replanting, or vineyard replacement
 - based on a variety of factors but not on economic impact
 - may not be profit-maximizing

Outline

- Background
- Economic impact literature
- Contribution
- Methodology
 Survey, parameters, scenarios, economic analysis
- · Results and discussion
- Next steps

Literature

- Walker et al. (2004) in New Zealand:
 - Losses estimated at \$8,600/acre by year 12, 15 and 17 (3 infection risk scenarios)
 - Replanting economically justified by year 6, 8 and 11
- Nimmo-Bell (2006):
 - Vine roguing more cost-effective than total vineyard replacement in year 6
 - It reduced the disease losses 6 to 7-fold when compared to 'no control'

Contribution

- Estimate profitability impact of GLD in V. vinifera cv. Cabernet franc in Finger Lakes vineyards of New York
- Recommend loss-minimizing management strategies for disease control under several scenarios

Methodology

Survey of Finger Lakes vineyard managers (2009-2010)

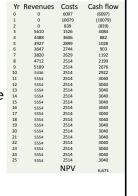
Methodology

- Survey of vineyard managers (2009-2010)
 - perceived ranges of GLD prevalence
 - magnitudes of yield reduction due to disease
 - disease control measures adopted
 - penalties incurred due to poor fruit quality

Methodology

- Survey of vineyard managers (2009-2010)
- Parameters used for scenario construction
 - GLD prevalence: 1 to 60%
 - Spread of GLD by vectors: model of GLRaV-3 spread by Walker et al. (2004) and Charles et al. (2009)
 - 50% prevalence predicted in year 8 and 90% in year 12 $\,$
 - Methods of GLD control: no control, roguing, vineyard replacement
 - Yield reduction: 30 and 50%
 - Fruit quality alteration: 0 and 10% price penalty

Methodology


- Survey of vineyard managers (2009-2010)
- Parameters used for scenario construction
- Scenarios:
 - (1) baseline (or no GLD infection)
 - (2) no disease control
 - (3) GLD prevention: virus-tested certified vines
 - (4) roguing
 - (5) vineyard replacement, and
 - (6) late vector-mediated GLD infection

Methodology

- Survey
- Parameters
- Scenarios
- Economic analysis:
 - -Financial tool: Net Present Value per acre over 25 years
 - -GLD losses:

NPV(baseline)-NPV(scenario)

-Optimal control measures: highest NPV

Results

GLD-led losses under no control: \$10,300 to \$16,600/acre

Scenarios		Losses (\$/acre)	
30% yield	no penalty,	10,300	
reduction	10% penalty	10,700	
50% yield	no penalty,	16,300	
reduction	10% penalty	16,600	

Results

Value of planting vines derived from certified, virus-tested stocks

Scenarios	Losses (\$/acre)	
Clean vines	750	
Roguing	1,300-22,700	
Vineyard replacement	10,000	
No control	10,300-16,600	

Results Roguing or vineyard replacement? Roguing 1% 20% 25% 26% 30% scenarios Losses 1,300 7,600 9,400 10,100 11,300 (\$/acre) \$\frac{\frac{1}{300}}{\frac{5}{10,000/acre}}\$\$ Vineyard replacement Rogue when infection \(\leq \frac{25\%}{300}, \text{replace} \text{vineyard otherwise} \)

Results Late vector-mediated GLD infection

Late vector-mediated	Roguing impact (\$/acre)	
infection scenarios		
Year 12	\$3,752	
Year 16	\$4,748	
Year 20	(\$343)	

Not economical to rogue if vineyard is in its 5th year before end of lifespan

Results

When is 'no control' optimal? Disease management matrix

50% yield reduction	10% penalty	No penalty
≤ 25% infection	rogue	rogue
> 25% infection	replace vineyard	replace vineyard

Same recommendation as before

Results

When is 'no control' optimal? Disease management matrix

30% yield reduction	10% penalty	No penalty
≤ 25% infection	rogue	rogue
> 25% infection	replace vineyard	indifferent
<30% yield reduction		
≤ 25% infection	rogue	rogue
> 25% infection	replace vineyard	do not control

Not economical to control under high GLD prevalence: if low yield reduction and no price penalty

Discussion

• Economic impact consistent with literature

Study	GLD losses	
This study (2011)	\$10,300-\$16,600/acre	
Nimmo-Bell (2006)	\$19,000/acre	
Walker et al (2004)	\$13,000-\$20,000/acre	

• Cabernet franc in Finger Lakes: 69% prevalence →94 acres→\$1 to \$1.5 million

Next steps

- Survey prevalence of GLD and its vectors over time in order to calibrate
- Bioeconomic models of disease control
- Incorporate impacts of cooperative vs. non-cooperative disease control behavior
- Study impact at national level

For more information:

Economic Impact of Grapevine Leafroll Disease on Vitis vinifera cv. Cabernet Franc in Finger Lakes Vineyards of New York, Working Paper No. WP-2011-14, Charles H. Dyson School of Applied Economics and Management. Available at http://dyson.cornell.edu/research/wp.php

Discussion

- Paying a premium for 'clean' planting material is financially rewarding
- Roguing or vineyard replacement justified only if:
- (1) yield reduction high enough and/or
- (2) price penalty enforcement and/or
- (3) vines young enough
- 25% threshold same under low and high grape price scenarios

Thank you!

Questions and Answers

Shadi S. Atallah, sa589@cornell.edu Miguel I. Gómez, mig7@cornell.edu